

HLB055 /055A CABLE SPECS

VELOCITY OF PROPAGATION 78.7%

TIME DELAY 1.27 ns/ft 4.24 ns/m

CAPACITANCE 25.9 pF/ft (85 pF/m)

WITHSTANDING VOLTAGE 500V

INSULATION RESISTANCE 1,000 M Ω

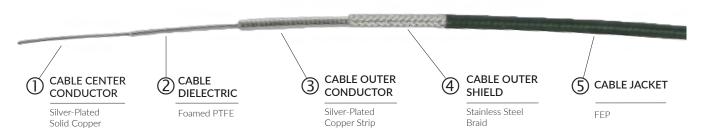
SHIELDING EFFECTIVENESS >100dB

PHASE STABILITY VS FLEXURE ± 8° @ 110GHz

AMPLITUDE STABILITY <± 0.1dB @ 110GHz

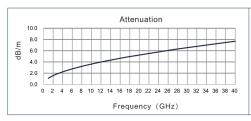
DURABILITY 1,000 Cycles Min.

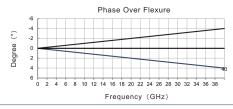
OPERATING TEMPERATURE RANGE -55° C to +85 ° C

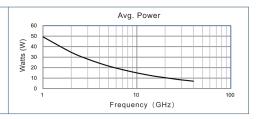

MINIMUM BEND RADIUS

Armored: .79" (20mm)

Non-Armored: 0.2" (5mm)


DURABILITY 1,000 Cycles Min


HLB055 CABLE CONSTRUCTION



HLB055 CABLE TYPICAL PERFORMANCE DATA (Typical @ 25°C) & Power (40°C, Sea Level)

Frequency GHz	1	2	3	4	5	6	8	10	12	14	16	18	26.5	30	40	50	60	67	110
VSWR	1.05	1.07	1.09	1.06	1.13	1.09	1.16	1.11	1.15	1.17	1.23	1.20	1.25	1.21	1.26	1.31	1.25	1.37	1.41
Insertion Loss (dB)	0.34	0.52	0.68	0.77	0.86	0.99	1.13	1.31	1.42	1.58	1.67	1.78	2.12	2.25	2.54	2.83	3.27	3.54	5.07

HLB098 CABLE SPECS

VELOCITY OF PROPAGATION 76%

TIME DELAY 1.31 ns/ft (4.39 ns/m)

CAPACITANCE 27.4 pF/ft (90 pF/m)

WITHSTANDING VOLTAGE 900V

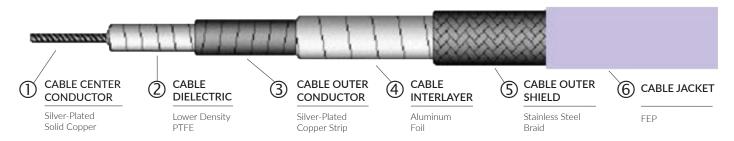
INSULATION RESISTANCE 1,000 MΩ

SHIELDING EFFECTIVENESS <-90dB

PHASE STABILITY VS FLEXURE ±4° @ 40 GHz

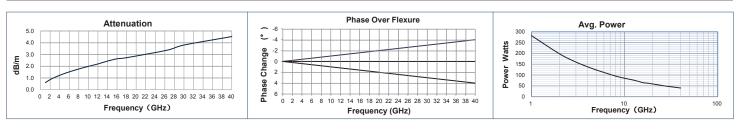
AMPLITUDE STABILITY <±0.05dBm @ 18 GHz

DURABILITY 1,000 Cycles Min.


OPERATING TEMPERATURE RANGE -65° C to +165 ° C

MINIMUM BEND RADIUS
Static: 0.2" (5mm)
Repeated: 0.4" (10mm)

DURABILITY 1,000 Cycles Min.



HLB098 CABLE CONSTRUCTION

HLB098 TYPICAL PERFORMANCE DATA (Typical @ 25°C) & Power (40°C, Sea Level)

Frequency GHz	1	2	3	4	5	6	8	10	12	14	16	18	26.5	30	40
Attenuation dB/m	0.60	0.86	1.06	1.23	1.38	1.52	1.77	1.99	2.19	2.44	2.64	2.73	3.37	3.81	4.53
Avg. Power W	103	72	59	50	45	41	35	31	28	27	25	23	18	16	14

CHALLENGES OF TRADITIONAL RF CABLE ASSEMBLIES

Engineers designing high-frequency systems often face several challenges:

- Tight Space Constraints: Many RF and microwave applications require compact designs with minimal bending radii, making rigid or semi-rigid cables impractical.
- Signal Integrity Issues: High-frequency cables must maintain phase and amplitude stability, even when subjected to repeated flexing.
- **Connector Limitations**: Right-angle connectors are often necessary to fit cables into small enclosures, but they introduce additional insertion loss and mechanical stress points.
- **Durability Concerns:** Frequent movement, vibrations, and extreme temperatures can degrade cable performance over time, leading to signal loss and system failures.

To address these concerns, HASCO developed the LittleBend™ series, which offers a breakthrough in flexibility and electrical performance without the trade-offs associated with traditional solutions.

COMPARISON WITH COMPETITOR OFFERINGS

FEATURE	HASCO LittleBend™	TIMES MICROWAVE InstaBend™	HUBER+SUHNER MiniBend™	MEGAPHASE HyperFlex™	
Minimum Bend Radius	0.2" (5mm)	0.25" (6.35mm)	0.25" (6.35mm)	0.3" (7.6mm)	
Shielding Effectiveness	>90dB	>90dB	>85dB >85dE		
Retention Force	>90N	80N	67N	75N	
Phase Stability	±4° @ 40 GHz	±6° @ 40 GHz	±5° @ 40 GHz	±5° @ 40 GHz	
Amplitude Stability	<±0.05dB @ 18 GHz	<±0.1dB @ 18 GHz	<±0.1dB @ 18 GHz	<±0.1 dB @ 18 GHz	
Maximum Frequency 65 GHz		50 GHz	65 GHz	50 GHz	
Durability (Flex Cycles) 1,000+		500+	750+	500+	

BENEFITS OF LITTLEBEND CABLE ASSEMBLIES

1. Ultra-Flexibility with Tight Bend Radius

LittleBend™ cables are designed for demanding applications where space is limited. With a minimum static bend radius of just 0.2 inches (5mm) and repeated bend capability at 0.4 inches (10mm), LittleBend™ outperforms many competitors that require larger bend radius for stability.

2. Elimination of Right-Angle Connectors

Unlike traditional cables that require right-angle connectors to accommodate tight spaces, LittleBend™ allows for extreme flexibility while maintaining electrical performance, eliminating the need for these bulky and loss-inducing connectors.

3. Exceptional Shielding Effectiveness

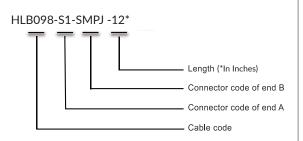
With a shielding effectiveness of >90 dB, LittleBend™ ensures superior EMI suppression, which is critical in sensitive applications such as aerospace and military communications.

4. High Retention Force and Durability

LittleBend™ cables boast a retention force of >90N,ensuring a secure connection that can withstand mechanical stress. In comparison, Huber+Suhner's MiniBend™ offers a retention force of only 67N.

5. Superior Phase and Amplitude Stability

High-frequency applications demand consistent electrical performance even under flexure. LittleBend™ provides phase stability of ±4° @ 40 GHz and amplitude stability of <±0.05 dB @ 18 GHz, outperforming competitors in dynamic environments.


6. Broad Frequency Range and Low Loss

LittleBend™ is engineered to support frequencies up to 65 GHz, making it suitable for emerging high-frequency applications in 5G, satellite communications, and radar systems.

RIOR ALTERNATIVE

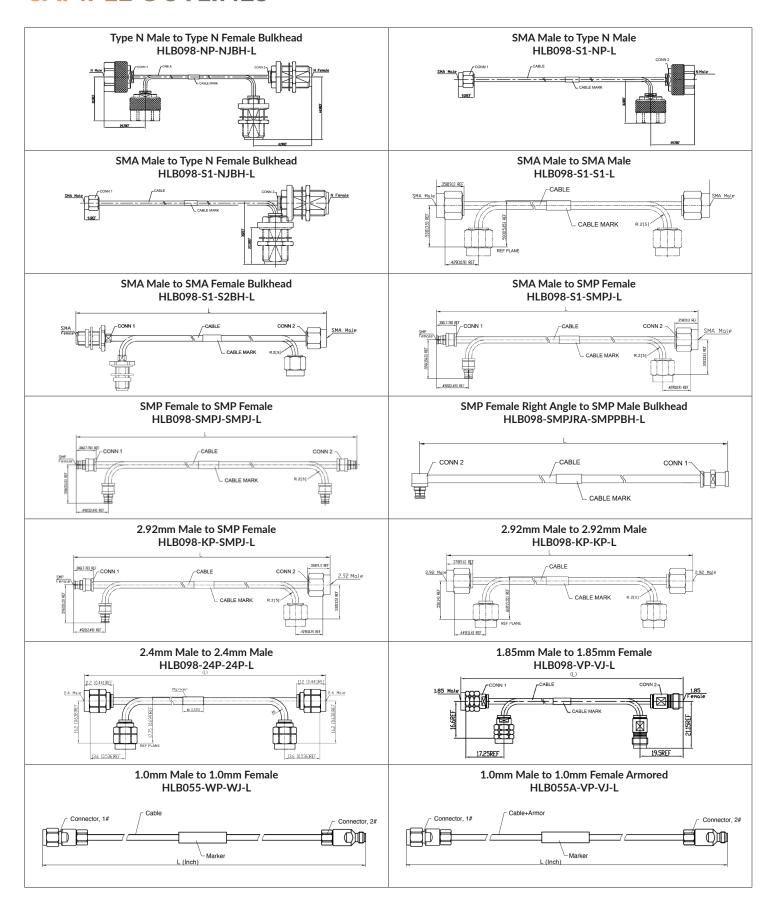
AVAILABLE CONNECTORS

How to Configure Littlebend Cables

Connector Codes						
NP	Type N Male					
NJBH	Type N Female Bulkhead					
S1	SMA Male					
S2BH	SMA Female Bulkhead					
SMPJRA	SMP Female Right Angle					
SMPPBH	SMP Male Bulkhead					
SMPJ	SMP Female					
SMPMJ	SMPM Female					
SMPMJRA	SMPM Female Right Angle					
КР	2.92mm Male					
24P	2.4mm Male					
۷J	1.85mm Female					
VP	1.85mm Male					
MJ	*1.0mm Female					
WP	*1.0mm Male					

Littlebend[™] Ultra-Flexible Cable Series are 100% tested for VSWR and insertion loss and are available in standard lengths from 3 to 48 inches.

Additional configurations available by special order.


*1.0mm connectors only available with HLB055(A) *HLB055(A) only available with 1.0mm connectors

NOTE:

Maximum frequency of final cable configuration will be limited to the maximum frequency of the lowest frequency connector.

Connector Type	Connector Code	Frequency*	Material	Max VSWR
	Type N Male = NP	18 GHz	Stainless Steel	1.35:1
	Type N Female Bulk- head = NJBH	18 GHz	Stainless Steel	1.35:1
	SMP Female Right Angle = SMPJRA	18 GHz	Brass	1.30:1
	SMP Male Bulkhead = SMPPBH	18 GHz	Stainless Steel	1.30:1
	SMA Male = S1	26.5 GHz	Stainless Steel	1.25:1
	SMA Female Bulkhead = S2BH	26.5 GHz	Stainless Steel	1.30:1
	SMP Female = SMPJ	40 GHz	Brass	1.30:1
	SMPM Female = SMPMJ	40 GHz	BeCu	1.35:1
	SMPM Female Right Angle = SMPMJRA	40 GHz	BeCu	1.35:1
	2.92mm Male = KP	40 GHz	Stainless Steel	1.30:1
	2.4mm Male = 24P	50 GHz	Stainless Steel	1.30:1
(4)	1.85mm Male = VP	67 GHz	Stainless Steel	1.40:1
	1.85mm Female = VJ	67 GHz	Stainless Steel	1.40:1
(6)	1.0mm Male = WP	110 GHz	Stainless Steel	1.50:1
Om A	1.0mm Female = WJ	110 GHz	Stainless Steel	1.50:1

SAMPLE OUTLINES

Most Common Applications of LittleBend™

Aerospace and Defense

Radar and Electronic Warfare Systems
Satellite Communications
Military Avionics

Telecommunications

5G base Stations and mmWave Infrastructure High-Frequency RF Modules

Test and Measurement

High-Precision Test Benches Network Analyzers and RF Probes

• Medical Imaging and Research

MRI and High-Frequency Ultrasound Advanced Research Labs

LittleBend[™] by HASCO delivers a breakthrough in flexibility, shielding, and stability, setting it apart from competitors like InstaBend[™], MiniBend[™], and HyperFlex[™]. Its combination of ultra-tight bend radius, superior shielding, high retention force, and excellent electrical performance makes it an indispensable solution for engineers in high-frequency, space-constrained applications.

For those seeking the ultimate in performance and reliability, LittleBend™ is the clear choice.

For more information visit: https://www.hasco-inc.com/Littlebend

5214 Bonsai Street Moorpark, CA 93021 (888) 498-3242 sales@hasco-inc.com hasco-inc.com